Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(7): 11307-11320, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38217811

RESUMEN

High-fluoride groundwater is commonly found in coastal areas worldwide, while its formation mechanism remains elusive. Herein, a comprehensive study was performed to identify the major controlling factor of high-fluoride groundwater occurrence along the eastern coast of China. Hydrogeochemical methods were employed to examine the distribution patterns of seawater intrusion and fluoride concentration and the impact of seawater intrusion on the fluoride concentration. The results indicate that seawater intrusion significantly influences the groundwater evolution process in the study areas. The groundwater in Laizhou Bay was affected by brine, and the groundwater in Tianjin and Jiangsu was affected by seawater with a mixing ratio lower than 40% and 20%, respectively. And the fluoride concentration in groundwater from Tianjin, Laizhou Bay, and Jiangsu generally exceeded 1 mg/L, with the average of 2.3 mg/L, 24.9 mg/L, and 34.6 mg/L, respectively. Both the degree of seawater intrusion and the fluoride concentration exhibit a consistent pattern: Laizhou Bay > Tianjin > Jiangsu. Cl- concentration in groundwater varies positively with the F- concentration (y = 0.66x - 1.31). Moreover, the spatial distribution of areas with high-fluoride groundwater mirrors that of seawater intrusion. The high-fluoride groundwater varies spatially and is related to the degree, stage, and type of seawater intrusion. In other words, when seawater intrusion intensifies more or groundwater in the freshwater renewal phase with higher Na+/Ca2+ or the presence of paleo-seawater intrusion with higher fluoride concentration of brine, the concentration of fluoride in groundwater is higher. As seawater intrusion intensifies, the high-fluoride groundwater in the study areas generally poses a higher health risk to human. These findings enhance our comprehension of the mechanisms underpinning high-fluoride groundwater in coastal regions and the environmental ramifications of seawater intrusion.


Asunto(s)
Fluoruros , Agua Subterránea , Sales (Química) , Humanos , Fluoruros/análisis , Monitoreo del Ambiente/métodos , Agua de Mar , China
2.
Food Res Int ; 174(Pt 1): 113591, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986528

RESUMEN

Sipunculus nudus, an edible marine invertebrate, has long been used as traditional Chinese medicine in folk remedies. In order to assess the immunoregulatory activity of glycoproteins in Sipunculus nudus and conduct a structure-activity relationship, a glycoprotein (SGP1) with molecular mass of 9.26 kDa was purified from Sipunculus nudus, and its chemical structure as well as immune-enhancing activity was investigated in this study. Structure analysis revealed that SGP1, a protein-dominate glycoprotein with O-glycosidic bonds, contained 92.8 % protein and 3.1 % saccharide. GC-MS result indicated that the saccharide moieties of SGP1 basically consisted of lyxose (Lyx), xylose (Xyl) as well as glucose (Glu) at a molar proportion of 0.87:4.16:1.36. The fourier transform infrared specoscopy (FT-IR) result proved that SGP1 have a typical characteristic of glycoprotein. Besides, circular dichroism (CD) result showed that SGP1 contained 4.1 % α-helix, 42.5 % ß-sheet, 21.4 % ß-turn, and 32.0 % random coil, indicating it's mainly a ß-sheet glycoprotein. The amino acid sequence of SGP1 shared a similarity to the Myohemerythrin (sp|Q5K473|HEMTM) with protein sequence coverage of 28.3 %. Moreover, the activity evaluation results showed that SGP1 exhibited significant immune-enhancing activity to the RAW 264.7 macrophages by promoting macrophages proliferation, enhancing phagocytic capacity, and simultaneously stimulating the secretions of nitric oxide (NO), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) via NF-κB pathways. In this study, SGP1 as a novel glycoprotein had an obvious immune-enhancing activity to macrophages, and thus could be applied in the functional foods as a potential immunopotentiator for the hypoimmune population.


Asunto(s)
Nematodos , Animales , Espectroscopía Infrarroja por Transformada de Fourier , Nematodos/química , Macrófagos , Óxido Nítrico , Interleucina-6 , Factor de Necrosis Tumoral alfa
3.
Polymers (Basel) ; 15(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37376279

RESUMEN

Plant fiber-reinforced composites have the advantages of environmental friendliness, sustainability, and high specific strength and modulus. They are widely used as low-carbon emission materials in automobiles, construction, and buildings. The prediction of their mechanical performance is critical for material optimal design and application. However, the variation in the physical structure of plant fibers, the randomness of meso-structures, and the multiple material parameters of composites limit the optimal design of the composite mechanical properties. Based on tensile experiments on bamboo fiber-reinforced, palm oil-based resin composites, finite element simulations were carried out and the effect of material parameters on the tensile performances of the composites was investigated. In addition, machine learning methods were used to predict the tensile properties of the composites. The numerical results showed that the resin type, contact interface, fiber volume fraction, and multi-factor coupling significantly influenced the tensile performance of the composites. The results of the machine learning analysis showed that the gradient boosting decision tree method had the best prediction performance for the tensile strength of the composites (R2 was 0.786) based on numerical simulation data from a small sample size. Furthermore, the machine learning analysis demonstrated that the resin performance and fiber volume fraction were critical parameters for the tensile strength of composites. This study provides an insightful understanding and effective route for investigating the tensile performance of complex bio-composites.

4.
Mar Pollut Bull ; 188: 114564, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36736248

RESUMEN

Groundwater is a main source of water supply in Guangxi Province, China. The urbanization expansion and ocean dynamic may change the groundwater quality, which is an important issue due to its effects on human health. In this paper, the influence of seawater intrusion and anthropogenic activity on the Guangxi coastal aquatic environment was assessed by geochemical and multivariate statistical methods. The result indicated that the chemical composition of groundwater in the study area is obviously associated with seawater and the main groundwater types were Ca·Na-Cl, Ca·Na-HCO3, and Ca-HCO3·Cl. The groundwater evolution path from land to sea in Guangxi is Ca-HCO3 â†’ Na·Mg-Cl. The origin of salts in the study area is mainly controlled by mineral weathering, the hydrogen and oxygen isotopes contents point to the aqueous source of atmospheric precipitation. According to the results of PCA, seawater intrusion and pollution caused by human activities play an increasingly important role in the evolution of groundwater characteristics. Seawater intrusion is the main factor for the increase of groundwater salinity in Guangxi, while domestic sewage, industrial waste, fertilizers, and pesticides may contribute to the nitrate pollution of groundwater, especially in Beihai. The degree of groundwater nitrate pollution is as follows: Fangchenggang < Qinzhou < Beihai, which is associated with the degree of urbanization in the coastal area. Finally, the results of the water quality index (WQI) assessment show that 82.8 % of the samples were classified as excellent, while there is still a need to be vigilant about groundwater pollution caused by seawater intrusion and groundwater pollution. The results will be valuable for sustainable groundwater resource management in Guangxi coastal zone.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Monitoreo del Ambiente/métodos , Nitratos/análisis , Contaminantes Químicos del Agua/análisis , China , Agua Subterránea/química , Calidad del Agua , Agua de Mar
5.
Plast Reconstr Surg ; 151(2): 245-254, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36696318

RESUMEN

BACKGROUND: Recent studies show evidence that surgical nerve decompression could improve cutaneous blood flow (CBF), which might benefit ulcer healing. However, the change of CBF and sympathetic fibers after nerve compression is poorly understood. In the current study, a unilateral sciatic nerve compression model was created in Sprague-Dawley rats. METHODS: A laser Doppler imaging system was applied to assess the CBF of the regions below the ankles. Immunohistochemistry and transmission electron microscopy were used to investigate the histopathologic changes of sympathetic fibers in sciatic nerve samples. RESULTS: Laser Doppler imaging revealed decreased CBF of both the lesional limb and the contralesional limb, which occurred earlier in the lesional side, indicating an enhanced sympathetic tone on vasomotor function. Intraneural density of sympathetic fibers decreased on both sides and the ultrastructure of unmyelinated fibers of both sides degenerated in a nonsynchronized manner. CONCLUSIONS: The study revealed nonsynchronized reduced CBF of bilateral hind limbs with paradoxically degenerated and diminished sympathetic fibers in bilateral sciatic nerves after unilateral sciatic nerve compression. These results may validate the importance of and broaden the indications for surgical nerve decompression in preventing or treating foot ulcers.


Asunto(s)
Fibras Adrenérgicas , Neuropatía Ciática , Ratas , Animales , Ratas Sprague-Dawley , Microcirculación , Nervio Ciático/cirugía , Nervio Ciático/fisiología
6.
Materials (Basel) ; 17(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38203935

RESUMEN

Although sugarcane bagasse ash (SCBA) possesses favorable cementitious properties, previous research has primarily focused on improving the mechanical performance of conventional concrete- or cement-based composites. Limited attention has been given to ultra-high-performance concrete (UHPC) with SCBA, especially regarding its tensile -sensing properties. This study aimed to comprehensively evaluate the effect of SCBA on the mechanical, electrical, and tensile self-sensing properties of UHPC. The results demonstrated that incorporating SCBA below the critical concentration of 3.0 wt% enhanced the mechanical properties of UHPC. Notably, adding 3.0 wt% SCBA remarkably improved the compressive, flexural, and tensile strengths of UHPC, resulting in increases of 13.1%, 17.4%, and 20.6%, respectively. However, excessive incorporation of SCBA adversely affected the mechanical properties due to reduced workability of UHPC, increased generation of harmful voids, and a lower degree of hydration caused by the excess SCBA. Furthermore, the inclusion of SCBA influenced the electrical resistivity of UHPC, and specifically, an SCBA content of 0.3 wt% yielded the maximum electrical resistivity. Moreover, incorporating SCBA in UHPC enhanced its tensile stress-sensing performance compared to SCBA-free UHPC. Among the various SCBA contents tested, UHPC with 0.3 wt% SCBA presented the best linearity, with values of 8.8% for loading and 17.0% for unloading, respectively, which were significantly lower than those for SCBA-free UHPC, which were 14.0% and 60.0%, respectively. Additionally, UHPC with 0.9 wt% SCBA gained the lowest hysteresis and repeatability, with values of 13.3% and 5.3%, respectively, which were much lower than those for SCBA-free UHPC, which were 50% and 51.6%, respectively. The tensile stress-sensing performance of UHPC is influenced by three key aspects: the gap between adjacent conductive fillers, contact resistance, and the connectivity of the electrical network, which are subject to change due to varying stress states and SCBA concentrations. This study should aid SCBA use and promote UHPC's practical applications.

7.
Foods ; 11(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36010396

RESUMEN

Cold plasma (CP) has become an alternative to conventional thermal processing of food products. In this study, the effect of cold plasma treatment time on the inactivation and quality of tilapia fillets was investigated. The surfaces of tilapia fillets were inoculated with Salmonella enteritis (S. enteritis), Listeria monocytogenes (L. monocytogenes), and a mixture of both before being treated with cold plasma at 70 kV for 0, 60, 120, 180, 240, and 300 s. With the extension of treatment time, the number of colonies on the surface of the fillets decreased gradually; after 300 s of cold plasma treatment, S. enteritis and L. monocytogenes populations were reduced by 2.34 log CFU/g and 1.69 log CFU/g, respectively, and the a* value and immobile water content decreased significantly (p < 0.05), while the free water content increased significantly (p < 0.05). TBARS value increased significantly (p < 0.05) to 1.83 mg MDA/kg for 300 s treatment. The carbonyl value and sulfhydryl value of sarcoplasmic protein significantly (p < 0.05) increased and decreased, respectively, as treatment time extension, while no significant changes were found in myofibrillar protein. No significant differences were observed in pH, b* value, elasticity, chewiness, thiol value, and TVB-N value. The results showed that cold plasma had an inactivation effect on tilapia fillets and could preserve their original safety indicators. It was concluded that CP treatment could be used as an effective non-thermal method to maintain the quality of tilapia fillets and extend their shelf-life.

8.
Sci Total Environ ; 844: 157205, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35810892

RESUMEN

Seawater intrusion (SWI) seriously affects the economic development of coastal areas in southern China, and understanding its mechanisms is the basis for effective control of SWI. Hydrogeochemical methods and slack-based measurement data envelopment analysis (SBM-DEA) are used to study the characteristics and potential risk of SWI in coastal cities of southern China. Types and distribution of SWI, coastal groundwater evolution, geological-geographic and economic threatens of SWI, potential SWI risk, and environmental management recommendations are explored. The results show that the intrusion areas of Zhejiang and Guangdong account for 94.1 % of the total intrusion area of southern China, and the intrusion degree in Zhejiang is the highest, followed by Guangdong and Fujian. SWI is prone to occur on the sandy and silty coasts of the plain area of southern China; it accelerates the groundwater evolution speed and shortens the evolution path. SBM-DEA can be well applied to evaluate the potential risk of SWI events, and the results indicate a noticeable difference in the environmental performance level of coastal cities in southern China. The low environmental performance level (<0.3) and severe SWI of Taizhou and Zhanjiang indicate that SWI gradually worsens with economic development. In contrast, the high environmental performance level (>0.7) and low SWI of Wenzhou, Fuzhou, Quanzhou, Shantou, and Beihai indicate that the potential risk of SWI is gradually decreasing. Moreover, this study confirms that the environmental Kuznets curve (EKC) phenomenon exists in SWI events for southern China, and SWI-EKC indicates that the urban development of south China is approaching maturity. The specific case of SWI and EPL in coastal cities of south China jointly indicates that optimizing industrial structure, implementing a resources management policy, and improving citizens' environmental awareness are fundamental measures to resolve the contradiction between economic development and environmental problems.


Asunto(s)
Agua Subterránea , Agua de Mar , China , Ciudades , Monitoreo del Ambiente , Agua Subterránea/química , Industrias
9.
Int J Food Microbiol ; 375: 109738, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35635991

RESUMEN

Fresh tilapia fillets are susceptible to perish due to the microbial contamination during storage. High voltage atmospheric cold plasma (HVACP), a non-thermal technology, can effectively inactivate various microorganism. The aim of this study was to identify the microorganism amount and diversity changes of fresh tilapia fillets during refrigerator storage after HVACP treatment. Samples were treated at 70 kV for 1, 3 and 5 min by dielectric discharge barrier (DBD) cold plasma then stored at 4 °C. During the storage, amounts of Total viable bacteria (TVB), Psychrophilic bacteria, Pseudomonas spp., Lactic acid bacteria, Enterobacteriaceae, H2S-producing bacteria were measured, and microbial diversity of samples was analyzed. Long treatment time showed a great reduction effect on amounts of all bacteria. When tilapia fillets were treated at 70 kV for 5 min and stored for 12 d, amounts of TVB, Pseudomonas spp. and Enterobacteriaceae were 7.15, 6.99 and 4.23 log CFU/g, respectively, which were significantly lower (P < 0.05) than those in control group. High-throughput sequencing results showed that microbial diversity of tilapia fillets treated by HVACP was fluctuated as storage time extend, microbial species richness was decreased during first two days, and increased to the peak till 9 d, then decreased again. The dominant bacteria in fresh samples were Acinetobacter, Macrococcus, Pseudomonas, and Lactococcus. The abundance of both Acinetobacter and Macrococcus were decreased gradually during storage, while the abundance of Lactococcus was increased at first 3 d then decreased. After 12 d of storage, the dominant bacteria were transformed into Pseudomonas, Arthrobacter, and Kurthia.


Asunto(s)
Gases em Plasma , Tilapia , Animales , Bacterias/genética , Conservación de Alimentos/métodos , Almacenamiento de Alimentos/métodos , Gases em Plasma/farmacología , Refrigeración , Tilapia/microbiología
10.
Materials (Basel) ; 15(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35329487

RESUMEN

The existence of chloride ions, sulfate ions, and vehicle dynamic loads may lead to a shortened service life and premature failure of the road and bridge structures in northwestern China. Immersed in a dual-salt solution while simultaneously applying cyclic flexural loads, the free chloride ion concentration and erosion depth in concrete specimens were measured. The influence of the sulfate concentration on the apparent surface chloride concentration (Cs) and apparent diffusion coefficient (Dapp) was studied. An exponential model was used to fit the Cs, and the influence of sulfate concentration on the Cs was analyzed. The result showed that cyclic loading and solution concentration were two primary factors affecting chloride diffusion. Meanwhile, compared with the emersion conditions, dynamic loading would induce significantly accelerated chloride ion penetration. Under the coupling effect of sulfate and dynamic loading, as the sulfate concentration increased, the chloride ion concentration and erosion depth were both decreased. The existence of sulfate ions improved the chloride ion penetration resistance of concrete. The results provide insight in designing concrete in regions where multiple salt ingression (sulfate and chloride) is a major durability issue of the structures.

11.
Soft Matter ; 17(40): 9047-9056, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34570150

RESUMEN

Micro-funnels have been widely applied to produce extensionally dominant flows for DNA manipulation, such as DNA extension for DNA mapping and DNA fragmentation for gene sequencing. However, it still lacks a systematic understanding of DNA fragmentation behaviors in complicated flow fields regulated by different funnel shapes with high flow rates. This limits the rational design and application scope of related microfluidic devices. In this study, fragmentation experiments of λ DNA were carried out in microfluidic chips with four different micro-funnel shapes, namely a sudden finish, a linear contraction, a constant acceleration, and an increasing extension rate funnel. The experimental results demonstrated a significant effect of the micro-funnel shape on the produced DNA fragment size. Then, the dynamical behaviors of DNA molecules in flow fields created by different micro-funnels were simulated using a numerical method of Brownian dynamics-computational fluid dynamics. The numerical simulation revealed that both the magnitude and distribution of the extension rate of flow fields were drastically altered by the funnel shape, and the extension rate at the micro-scale was the dominant factor of DNA fragmentation. The different DNA fragmentation behaviors in four micro-funnels were investigated from the perspectives including the fragment size distribution, fragmentation location, percentage of broken molecules, conformational type and stretched length of DNA before fragmentation. The results elucidated the significant impact of funnel shape on the dynamical behaviors of DNA fragmentation. This study offers insights into the rational design of microfluidic chips for DNA manipulation.


Asunto(s)
Dispositivos Laboratorio en un Chip , Microfluídica , Simulación por Computador , ADN , Fragmentación del ADN
12.
Acta Biochim Biophys Sin (Shanghai) ; 53(11): 1516-1526, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34536273

RESUMEN

Vascularization is an important early indicator of osteogenesis involving biomaterials. Bone repair and new bone formation are associated with extensive neovascularization. Silicon-based biomaterials have attracted widespread attention due to their rapid vascularization. Although calcium phosphate cement (CPC) is a mature substitute for bone, the application of CPC is limited by its slow degradation and insufficient promotion of neovascularization. Calcium silicate (CS) has been shown to stimulate vascular endothelial proliferation. Thus, CS may be added to CPC (CPC-CS) to improve the biocompatibility and neovascularization of CPC. In the early phase of bone repair (the inflammatory phase), macrophages accumulate around the biomaterial and exert both anti- and pro-inflammatory effects. However, the effect of CPC-CS on macrophage polarization is not known, and it is not clear whether the effect on neovascularization is mediated through macrophage polarization. In the present study, we explored whether silicon-mediated macrophage polarization contributes to vascularization by evaluating the CPC-CS-mediated changes in the immuno-environment under different silicate ion contents both in vivo and in vitro. We found that the silicon released from CPC-CS can promote macrophage polarization into the M2 phenotype and rapid endothelial neovascularization during bone repair. Dramatic neovascularization and osteogenesis were observed in mouse calvarial bone defects implanted with CPC-CS containing 60% CS. These findings suggest that CPC-CS is a novel biomaterial that can modulate immune response, promote endothelial proliferation, and facilitate neovascularization and osteogenesis. Thus, CPC-CS shows potential as a bone substitute material.


Asunto(s)
Cementos para Huesos/farmacología , Regeneración Ósea/efectos de los fármacos , Compuestos de Calcio/farmacología , Fosfatos de Calcio/farmacología , Silicatos/farmacología , Silicio/farmacología , Cráneo/efectos de los fármacos , Animales , Cementos para Huesos/química , Compuestos de Calcio/química , Fosfatos de Calcio/química , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Células RAW 264.7 , Silicatos/química , Silicio/química , Cráneo/irrigación sanguínea , Cráneo/lesiones
13.
Cartilage ; 13(2_suppl): 1030S-1040S, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34459260

RESUMEN

OBJECTIVE: To investigate the relationship between hypoxia inducible factor-1α (HIF-1α) and the autophagic response in osteoarthritic chondrocytes (OA), under inflammatory insult as represented by in vitro OA model. METHODS: Human chondrocyte cell line C28/I2 was cultured in both normoxic and hypoxic conditions and treated with interleukin-1ß (IL1ß) to emulate OA inflammatory insult in vitro. Cellular HIF-1α expression was silenced using siRNA transfection and cellular autophagic (P62/LC3II) response and OA chondrocyte damage (COL2A1/MMP13) related proteins were examined using western blotting. Cellular mitophagic (BNIP3/PINK1/Parkin) and apoptotic (Caspase/Cleaved Caspase 3) were also evaluated to assess mitophagy-mediated cell death due to HIF-1α silencing. RESULTS: Chondrocyte basal autophagy levels were higher in a HIF-1α elevated environment and was more resistant to IL1ß-induced inflammatory insult. Increase in autophagic proteins showed better chondrocyte repair, which resulted a lower level of reactive oxygen species production, and lesser damage to chondrocyte integrity. Silencing HIF-1α activates cellular PINK1/Parkin and BNIP3 mitophagic proteins, which leads to the activation of Caspase/Cleaved Caspase 3 apoptotic cascade. CONCLUSION: Our results show that chondrocyte autophagy is dependent on HIF-1α expression, showing the importance of HIF-1α in hypoxic chondrocyte function in OA. Dysregulation of HIF-1α expression results in the activation of mitophagy-mediated apoptosis.


Asunto(s)
Cartílago Articular , Condrocitos , Autofagia , Hipoxia de la Célula/fisiología , Condrocitos/metabolismo , Humanos , Hipoxia/metabolismo
14.
Analyst ; 146(3): 816-819, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33393565

RESUMEN

We developed a "signal-on" self-powered biosensing strategy by taking full advantage of both photoelectrochemical biofuel cells (PBFCs) and metal-organic framework (MOF)-controlled release behavior for ultrasensitive microRNA assay. PBFC-based self-powered sensors have the unique characteristics of non-requirement of external power sources, simple fabrication process, miniature size, good anti-interference ability and low cost. Furthermore, based on the target microRNA-induced release of the electron donor ascorbic acid and the high catalytic ability of the biocathode to catalyse the oxygen reduction reaction, photo-driven self-powered biosensors for ultrasensitive microRNA detection were successfully realized. The as-proposed signal-on biosensor not only provides a simple and effective strategy, but also possesses the merits of a wide dynamic concentration response range and high sensitivity for microRNA detection, with a limit of detection down to 0.16 fM.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , MicroARNs , Preparaciones de Acción Retardada , Técnicas Electroquímicas , Límite de Detección
15.
Polymers (Basel) ; 12(11)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187069

RESUMEN

This study aims to prepare bamboo-fiber-reinforced cement composites and provide a solution to the issue of poor interfacial adhesion between bamboo fibers and cement matrix. The original bamboo fibers were modified by three moderately low-cost and easy-to-handle treatments including glycerol, aluminate ester, and silane treatments. The performance of the modified bamboo-fiber-reinforced cement composites was evaluated by a series of mechanical and durability tests, including flexural and compressive strength, water absorption, chloride ion penetration, drying shrinkage, freeze-thaw resistance, and carbonization. In addition, the microstructures of composites were characterized using a scanning electron microscope (SEM). The results showed that the composites reinforced with glycerol-modified bamboo fibers had 14% increased flexural strength and comparable compressive strength. From durability perspectives, all treatments showed similar performance in drying shrinkage, whereas aluminate ester treatment was the most effective in terms of impermeability, chloride resistance, freeze-thaw resistance, and carbonization. The results could provide insights to efficient and effective natural fiber treatment to enable better performance of natural-fiber-reinforced cement-based materials.

16.
Chem Asian J ; 15(20): 3321-3325, 2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-32844601

RESUMEN

Water molecules within a thin hydration layer, spontaneously generated on hydrophobic protein surfaces, are reported to form a poorly dynamic network structure. However, how such a water network affects the conformational change dynamics of polar groups has never been explored, although such polar groups play a critical role in protein-protein and protein-ligand interactions. In the present work, we utilized as model protein surfaces a series of self-assembled monolayers (SAMs) appended with polar (Fmoc) or ionic (FITC) fluorescent head groups that were tethered via a 1.5-nm-long flexible oligoether chain to a hydrophobic silicon wafer surface, which was densely covered with paraffinic chains. We found that, not only in deionized water but also in aqueous buffer, these oligoether-appended head groups at ambient temperatures both displayed an anomalously slow conformational change, which required ∼10 h to reach a thermodynamically equilibrated state. We suppose that these behaviors reflect the poorly dynamic and low-permittivity natures of the thin hydration layer.

17.
Sci Total Environ ; 719: 137260, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32120094

RESUMEN

The seawater intrusion in the Dagu River Basin, China, has attracted intensive attention from the government and scholars. Increasing data have become available with the development of data acquisition technology. This situation brings unprecedented opportunities and challenges to the hydrochemical evolution analysis and improvement of seawater intrusion. The hydrochemical evolution process of groundwater is studied on the basis of our collected data in the Dagu River Basin by using mathematical statistics, end-element mixing, Durov, and Gibbs. The negative influencing factors of the groundwater environment are determined. Results show that the groundwater on the north side of the cutoff wall is mainly affected by residual saltwater, sulfuric acid leakage, and NO- 3 pollution. The groundwater on the south side of the cutoff wall is seriously affected by seawater invasion, followed by NO- 3 pollution. Meanwhile, the groundwater on the west bank of the Dagu River Basin is mainly affected by NO- 3 pollution. The groundwater on the north side of the cutoff wall must be discharged on a large scale for its improvement. Meanwhile, unpolluted water is recharged to renew the groundwater resources. Groundwater exploitation should be reduced, and the exploitation area should be dispersed to mitigate seawater intrusion and increase the recharge of the groundwater resources. NO- 3 pollution mainly comes from the sowing of chemical fertilizers and pesticides and domestic waste. Therefore, we should reduce the use of pesticides and fertilizers to control the generation, storage, and treatment of domestic pollutants strictly.

18.
Neuroscience ; 426: 179-188, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31783103

RESUMEN

Electrical muscle stimulation has been demonstrated to facilitate nerve regeneration and functional recovery, but the underlying mechanism remains only partially understood. In this study, we investigated the positive effect of electrical muscle stimulation following nerve injury and its molecular mechanisms of autophagy regulation. The sciatic nerves of Sprague-Dawley rats were transected and immediately repaired. Gastrocnemius muscles were electrically stimulated using surface electrodes. Motor functional recovery was assessed by gait analysis, nerve conduction examination and histological appearance of the target muscle. Axon regeneration was investigated by morphometric analysis. Western blotting and immunofluorescence staining were used to detect the expression of molecular biological changes in distal nerve stump. Ultrastructural features of the nerve were evaluated by transmission electron microscope. We found that axon regeneration and motor functional recovery were improved by electrical muscle stimulation. The number of autophagosomes and the expression of autophagy marker LC3-Ⅱ in distal nerve stump were increased while the level of autophagy substrate protein P62 was decreased following electrical muscle stimulation. Blockage of the autophagy flux by chloroquine (CQ) diminished the positive effect of electrical muscle stimulation on nerve injury. These results illustrated that electrical muscle stimulation accelerates axon regeneration and functional recovery through promoting autophagy flux in distal nerve segments following nerve injury and immediate repair (IR) by a so far unknown mechanism.


Asunto(s)
Estimulación Eléctrica , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/fisiopatología , Recuperación de la Función/fisiología , Nervio Ciático/lesiones , Animales , Autofagosomas/metabolismo , Autofagia/efectos de los fármacos , Axones/metabolismo , Estimulación Eléctrica/métodos , Neuronas Motoras/fisiología , Músculo Esquelético/inervación , Conducción Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Ratas Sprague-Dawley
19.
Stem Cell Res Ther ; 10(1): 351, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31775910

RESUMEN

BACKGROUND: Silicon-modified biomaterials have been extensively studied in bone tissue engineering. In recent years, the toxicity of silicon-doped biomaterials has gradually attracted attention but requires further elucidation. This study was designed to explore whether high-dose silicate can induce a cytotoxicity effect in bone mesenchymal stem cells (BMSCs) and the role of autophagy in its cytotoxicity and mechanism. METHODS: Morphologic changes and cell viability of BMSCs were detected after different doses of silicate exposure. Autophagic proteins (LC3, p62), LC3 turnover assay, and RFP-GFP-LC3 assay were applied to detect the changes of autophagic flux following silicate treatment. Furthermore, to identify the potential mechanism of autophagic dysfunction, we tested the acetyl-α-tubulin protein level and histone deacetylase 6 (HDAC6) activity after high-dose silicate exposure as well as the changes in microtubule and autophagic activity after HDAC6 siRNA was applied. RESULTS: It was found that a high dose of silicate could induce a decrease in cell viability; LC3-II and p62 simultaneously increased after high-dose silicate exposure. A high concentration of silicate could induce autophagic dysfunction and cause autophagosomes to accumulate via microtubule destabilization. Results showed that acetyl-α-tubulin decreased significantly with high-dose silicate treatment, and inhibition of HDAC6 activity can restore microtubule structure and autophagic flux. CONCLUSIONS: Microtubule destabilization caused by a high concentration of silicate via HDAC6 activation contributed to autophagic dysfunction in BMSCs, and inhibition of HDAC6 exerted a cytoprotection effect through restoration of the microtubule structure and autophagic flux.


Asunto(s)
Muerte Celular Autofágica/efectos de los fármacos , Células de la Médula Ósea/enzimología , Histona Desacetilasa 6/metabolismo , Células Madre Mesenquimatosas/enzimología , Microtúbulos/metabolismo , Silicatos/farmacología , Animales , Células de la Médula Ósea/citología , Activación Enzimática/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Ratas , Silicatos/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...